ATOMIC STRUCTURE AND BONDING

1999 U 01 Sp 01

1.	(a)	De	fine the terms (i) 'Mole' (ii). 'Molar Mass'	[2 marks]	
-1	(b)	20 cor	20 cm ³ of a solution of phosphorus(V) acid containing 1.96 g dm ⁻³ reacted with 25 cm ³ of a solution containing 1.28 g dm ⁻³ sodium hydroxide. [A _r values: H = 1.0, Na = 23.0, O = 16.0, P = 31.0]		
		Cal	Calculate the number of moles of		
		(i)	phosphorus(V) acid that reacted	[2 marks]	
		(ii)	sodium hydroxide that reacted	[1 mark]	
		(iii)	sodium hydroxide that reacted with 1 mole of the acid	[1 mark]	
	(c)	Der	Derive the equation for the reaction that occurred in part (b) above.		
	(d)	(i)	State Avogadro's Law.	[1 mark]	
		(ii)	0.068 g of a gas occupied 48 cm ³ at room temperature and pressure.		
			Calculate the molar mass of the gas. [The molar volume of a gas at r.t.p. = 24 dm^3]	[2 marks]	
2.	(a)	(i)	Draw dot and cross diagrams to show the bonding in molecules of: a) AIF ₃ ; b) NH ₃ .	[2 marks]	
		(ii)	State the shapes of these molecules.	[2 marks]	
		(iii)	Explain the shapes of the molecules identified in part (ii) above.	[2 marks]	
	(b)	(i)	What type of bonding would occur between AIF_3 and NH_3 molecules?	[1 mark]	
		(ii)	Using a dot and cross diagram, show how the bond noted in part (b)(i) is formed.	[2 marks]	
		(iii)	Predict the shape of the molecule resulting from the bond in part (b)(i).	[1 mark]	
3.	(a)	Expl	ain what is meant by the term 'radioactivity'.	[1 mark]	
	(b)	(i)	Define the term 'isotopes'.	[1 mark]	
		(ii)	Give TWO uses of radioisotopes.	[2 marks]	
	(c)	The resp	The element, Z, has two isotopes of masses 63.0 and 65.0 with relative abundances 75 and 25 espectively.		
		Calc	ulate the relative atomic mass of Z.	[2 marks]	
	(d)	Write	e an equation to represent the first ionisation energy of element Z.	[1 mark]	
	(c)	Assu	Assume that Z has an atomic number of 29.		
		(i)	Write the electron configuration of Z.	[2 marks]	
		(ii)	To which period of the periodic table does element Z belong?	[1 mark]	